34 research outputs found

    Inguinal Hernia Repair on Day Care Basis During Global COVID-19 Pandemic

    Get PDF
      Abstract Background: COVID-19 has effected General Surgical Elective list and most of the surgical procedures are postpone. Inguinal hernia surgery can be performed under local anesthesia on day care basis in selected group of patients taking all necessary precautions for COVID-19. Patients & Methods: This prospective study was conducted at department of General Surgery Federal Hospital, Islamabad for a period of three months from 15th March 2020 to 15th June 2020. All patients were included in the study through purposive sampling and preference was given to patients elder than 50 years of age. This study included 59 adult patients with inguinal hernia who under mesh repair under local anaesthesia on day care basis. Results: A total of 59 patients were included in the study. All patients were male. The age range was from 37 to 82 years (SD=± 10.23).  30 (50.84%) patient had inguinal hernia on left side while 26 (44.06%) had hernia on right side. Mean Operative time was 35 min. Pain was chief complaint postoperatively 30 (50.8%) patients had moderate pain while 6 (10.1%) patients had severe pain in first 24 hours after surgery. Fever was present in 15 (25.42%) patients in first 24 hours. All patients were negative for COVID -19 preoperatively and after 2 weeks none of the patients develop any symptoms of COVID-19. 3 (5.08%) patients needed readmission within 24 hours for pain and some haemorrhage. There was no mortality in our study Conclusions: Inguinal Hernia Surgery under local anaesthesia on day care basis in a very good practice at this time of global pandemic of COVID-19. This is a safe and reliable strategy. Key words: Inguinal Hernia, COVID-19, Local Anaesthesia &nbsp

    Field Assessment of Non-nuclear Methods Used for Hot Mix Asphalt Density Measurement

    Get PDF
    Destructive nature along with the associated higher cost of the traditional core method used for hot mix asphalt density measurement has convinced researchers switching to some non-destructive technique for this purpose which is cost efficient as well. Earlier, nuclear density gauges were introduced for this purpose which was non-destructive as well. Since such devices were associated with the use of gamma rays, therefore, leading to safety and health issues. Last decade observed a revolution in asphalt density measurement technique with the evolution of non-nuclear density gauges. This research work is carried out with the objective to determine the efficiency and accuracy of a newly developed non-nuclear density gauge i.e. PQI-380 for field conditions as it needs its thorough evaluation prior to future uses in many of the developing countries including Pakistan. Density data obtained using standard core method and non-nuclear density gauge for 195 location confirms the satisfactory performance of the instrument. Results obtained show that the coefficient of correlation is near to 0.9. which refers to a strong correlation between the density data. Moreover, performance criteria e.g. root mean square error and mean absolute error between the density data set is also very low confirming the good measuring abilities of the device. Instrument performed well for repeatability analysis giving maximum coefficient of variance less than 5 percent

    Interacting with a Chatbot-Based Advising System: Understanding the Effect of Chatbot Personality and User Gender on Behavior

    Get PDF
    Chatbots with personality have been shown to affect engagement and user subjective satisfaction. Yet, the design of most chatbots focuses on functionality and accuracy rather than an interpersonal communication style. Existing studies on personality-imbued chatbots have mostly assessed the effect of chatbot personality on user preference and satisfaction. However, the influence of chatbot personality on behavioral qualities, such as users’ trust, engagement, and perceived authenticity of the chatbots, is largely unexplored. To bridge this gap, this study contributes: (1) A detailed design of a personality-imbued chatbot used in academic advising. (2) Empirical findings of an experiment with students who interacted with three different versions of the chatbot. Each version, vetted by psychology experts, represents one of the three dominant traits, agreeableness, conscientiousness, and extraversion. The experiment focused on the effect of chatbot personality on trust, authenticity, engagement, and intention to use the chatbot. Furthermore, we assessed whether gender plays a role in students’ perception of the personality-imbued chatbots. Our findings show a positive impact of chatbot personality on perceived chatbot authenticity and intended engagement, while student gender does not play a significant role in the students’ perception of chatbots

    A Novel Secure Occupancy Monitoring Scheme Based on Multi-Chaos Mapping

    Get PDF
    Smart building control, managing queues for instant points of service, security systems, and customer support can benefit from the number of occupants information known as occupancy. Due to interrupted real-time continuous monitoring capabilities of state-of-the-art cameras, a vision-based system can be easily deployed for occupancy monitoring. However, processing of images or videos over insecure channels can raise several privacy concerns due to constant recording of an image or video footage. In this context, occupancy monitoring along with privacy protection is a challenging task. This paper presents a novel chaos-based lightweight privacy preserved occupancy monitoring scheme. Persons’ movements were detected using a Gaussian mixture model and Kalman filtering. A specific region of interest, i.e., persons’ faces and bodies, was encrypted using multi-chaos mapping. For pixel encryption, Intertwining and Chebyshev maps were employed in confusion and diffusion processes, respectively. The number of people was counted and the occupancy information was sent to the ThingSpeak cloud platform. The proposed chaos-based lightweight occupancy monitoring system is tested against numerous security metrics such as correlation, entropy, Number of Pixel Changing Rate (NPCR), Normalized Cross Correlation (NCC), Structural Content (SC), Mean Absolute Error (MAE), Mean Square Error (MSE), Peak to Signal Noise Ratio (PSNR), and Time Complexity (TC). All security metrics confirm the strength of the proposed scheme

    A Novel Hybrid Secure Image Encryption Based on Julia Set of Fractals and 3D Lorenz Chaotic Map

    Get PDF
    Chaos-based encryption schemes have attracted many researchers around the world in the digital image security domain. Digital images can be secured using existing chaotic maps, multiple chaotic maps, and several other hybrid dynamic systems that enhance the non-linearity of digital images. The combined property of confusion and diffusion was introduced by Claude Shannon which can be employed for digital image security. In this paper, we proposed a novel system that is computationally less expensive and provided a higher level of security. The system is based on a shuffling process with fractals key along with three-dimensional Lorenz chaotic map. The shuffling process added the confusion property and the pixels of the standard image is shuffled. Three-dimensional Lorenz chaotic map is used for a diffusion process which distorted all pixels of the image. In the statistical security test, means square error (MSE) evaluated error value was greater than the average value of 10000 for all standard images. The value of peak signal to noise (PSNR) was 7.69(dB) for the test image. Moreover, the calculated correlation coefficient values for each direction of the encrypted images was less than zero with a number of pixel change rate (NPCR) higher than 99%. During the security test, the entropy values were more than 7.9 for each grey channel which is almost equal to the ideal value of 8 for an 8-bit system. Numerous security tests and low computational complexity tests validate the security, robustness, and real-time implementation of the presented scheme

    Design of Portable Exoskeleton Forearm for Rehabilitation of Monoparesis Patients Using Tendon Flexion Sensing Mechanism for Health Care Applications

    Get PDF
    Technology plays a vital role in patient rehabilitation, improving the quality of life of an individual. The increase in functional independence of disabled individuals requires adaptive and commercially available solutions. The use of sensor-based technology helps patients and therapeutic practices beyond traditional therapy. Adapting skeletal tracking technology could automate exercise tracking, records, and feedback for patient motivation and clinical treatment interventions and planning. In this paper, an exoskeleton was designed and subsequently developed for patients who are suffering from monoparesis in the upper extremities. The exoskeleton was developed according to the dimensions of a patient using a 3D scanner, and then fabricated with a 3D printer; the mechanism for the movement of the hand is a tendon flexion mechanism with servo motor actuators controlled by an ATMega2560 microcontroller. The exoskeleton was used for force augmentation of the patient’s hand by taking the input from the hand via flex sensors, and assisted the patient in closing, opening, grasping, and picking up objects, and it was also able to perform certain exercises for the rehabilitation of the patient. The exoskeleton is portable, reliable, durable, intuitive, and easy to install and use at any time
    corecore